

ESOGU CIVIL ENGINEERING DEPARTMENT COURSE INFORMATION FORM

Course Title				Course Code			
STRUCTURAL ANALYSIS I					151415362		
Semester in	Number of	Cours	Course Hours per Week				
Program	Theory		Practice	- ECTS Credit		6 Credit	
5	4				5		
		C					
		Cours	se ECTS Credit Distrib	oution			
Basic Sciences	Engineerin Sciences	Cours	se ECTS Credit Distril Design	oution Gener	al Education	Social	
Basic Sciences	Engineerin Sciences 3	Cours	se ECTS Credit Distrit Design 2	oution Gener	al Education	Social	
Basic Sciences	Engineerin Sciences 3	Cours	se ECTS Credit Distrit Design 2	oution Gener	al Education	Social	
Basic Sciences	Engineerin Sciences 3 struction	Cours	se ECTS Credit Distrit Design 2 Course Level	Gener	al Education	Social ourse Type	

Prerequisite	
Objectives of the Course	Determination of the performance characteristics of statically determinate structures such as support reactions, internal forces, slope and displacement at certain points under the effect of design loads.
Brief Course Content	Assumptions, principles of equilibrium in determining reactions, bending moments and shear diagrams. Influence lines. Determination of displacements by virtual work. Virtual work, strain energy. Introduction to computer programs and use of program packages for structural analysis.

	Learning Outcomes of the Course	Contributed POs	Teaching Methods *	Assessment Methods **	
1	To be aware of building analysis and design and regulations.	1, 2, 3, 4	1, 6,10	A, B/D	
2	Analyze statically determinate structures	1, 2, 3, 4	1, 6,10	A, B/D	
3	Calculate deflection of structures using Integration Methods / virtual work	1, 2, 3, 4	1, 6,10	A, B/D	
4	Draw influence lines and determine the max values of internal forces	1, 2, 3, 4	1, 6,10	A, B/D	
5					
6					
7					
8					
*Tea	*Teaching Methods 1:Lecture, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation				
** 1	** Assessment Methods A. Evam B. Ouiz C. Oral Evam D. Homework F. Penort F. Article Evamination C. Presentation I. Evnerimental Skill				

**Assessment Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	 Bryant G. NIELSON & Jack C McCORMAC, Structural Analysis, Wiley 2017 K. M. LEET, C. M. UANG, A. M. GILBERT, Fundamentals of Structural Analysis, McGraw- Hill, 2008
Supplementary Resources	 F. Karadoğan, S. Pala, E.Yüksel, Y. Durgun, Yapısal Çözümleme, Cilt 1, Birsen Yayınevi, 2011 M. Ruhi AYDIN, Yapı Statiği Cilt I, Esogü yayın no:70 SAP 2000
Necessary Course Material	

	Course Weekly Schedule
1	Introduction to structural analysis and design. Basic principles of structural analysis. Structural components and systems. Structural forces.
2	Structural loads. Structural safety. Codes, standards and specifications. Types of structural loads. Loading conditions for the strength design. Dead loads, Live loads. Live loads on roofs. Snow loads. Wind loads. Seismic loads.
3	Vertical system loading and behavior. Structural idealization. Load path. Tributary areas. Slab behavior. Influence area. Floor live load reductions. Columns in multistory buildings
4	Lateral system loading and behavior. Lateral load path. Vertical lateral force resisting systems. Diaphragms. Tributary approach.
5	Reactions
6	Axial Force, Shear Force and Bending Moment.
7	Gerber systems, arches, frames
8	Mid-Term Exams
9	Analysis of trusses
10	Simple-compound-complex trusses
11	Deflections and Angle Changes in statically determinate structures by double integration method.
12	Deflections and Angle Changes in statically determinate structures by virtual work method.
13	influence lines for support reactions, shear and bending moments
14	Introduction to statically indeterminate structures
15	
16,17	Final Exams

Calculation of Course Workload				
Activities	Count	Time (Hour)	Total Workload (Hour)	
Weekly classroom time	14	4	56	
Weekly study time (review, reinforcing, preparation)	14	4	56	
Homework	5	5	25	
Taking a quiz				
Studying for a quiz				
Oral exam				
Studying for an oral exam				
Report writing (Preparation and presentation time included)				
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam	1	2	2	
Studying for Mid-Term Exam	1	5	5	
Final Exam	1	2	2	
Studying for Final Exam	1	5	5	
	Т	otal workload	151	
	Total workload / 30		5.03	
	Course	ECTS Credit	5	

Assessment			
Activity Type	%		
Mid-term	30		
Quiz			
Homework	20		
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	50		
Total	100		

RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)

NO	PROGRAM OUTCOME	Contribution
1	Sufficient knowledge of engineering subjects related with mathematics, science and own branch; an ability to apply theoretical and practical knowledge on solving and modeling of engineering problems.	4
2	Ability to determine, define, formulate and solve complex engineering problems; for that purpose an ability to select and use convenient analytical and experimental methods.	5
3	Ability to design a complex system, a component and/or an engineering process under real life constrains or conditions, defined by environmental, economical and political problems; for that	5
4	Ability to develop, select and use modern methods and tools required for engineering applications; ability to effective use of information technologies.	4
5	In order to investigate engineering problems; ability to set up and conduct experiments and ability to analyze and interpretation of experimental results.	
6	Ability to work effectively in inner or multi-disciplinary teams; proficiency of interdependence.	
7	Ability to communicate in written and oral forms in Turkish/English; proficiency at least one foreign language.	
8	Awareness of life-long learning; ability to reach information; follow developments in science and technology and continuous self-improvement.	3
9	Understanding of professional and ethical issues and taking responsibility	4
10	Awareness of project, risk and change management; awareness of entrepreneurship, innovativeness and sustainable development.	
11	Knowledge of actual problems and effects of engineering applications on health, environment and security in global and social scale; an awareness of juridical results of engineering solutions.	4

INSTRUCTORS						
Prepared by	Prof.Dr. Yunus Özçelikörs	Ass.Prof.Dr. Hakan Erol				

Date:17.07.2024