

ESOGU CIVIL ENGINEERING DEPARTMENT

COURSE INFORMATION FORM

Course Name				Course Code	
DYNAMICS				151413237	
Semester	Number of Cours	e Hours per Week Practice		ECTS	
3	3	0	4		

Course Category (Credit)						
Basic Sciences	Engineering Sciences	Design	General Education	Social		
2	2					

Course Language	Course Level	Course Type	
Turkish	Undergraduate	Compulsory	

Prerequisite(s) if any	-
Objectives of the Course	The main purpose of this course is to provide the student with a clear and through presentation of the theory and application of engineering mechanics.
Short Course Content	Kinemattics of particles. Rectilinear motion and curvilinear motion of particles. Rotation about a fixed axis and a fixed point. General motion. Kinetics of particles:Newton's second law.Work of a force. Kinetic energy of a particle. Principle of work and energy, potential energy, conservation of energy. Principle of impulse and momentum. Plane motion of rigid bodies.Mechanical vibration.

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Have general knowledge to be used in engineering designs.	1, 2	1, 5, 10	А, К
2	The infrastructure of courses such as Earthquake Engineering and Structural Dynamics is formed.	1, 2	1, 5, 10	А, К
3	Understanding Problem Solving Techniques.	1, 2	1, 5, 10	А, К
4	To be able to model the problem.	1, 2	1, 5, 10	А, К
5	Physics, elementary classical mechanics. This course devotes the majority of effort to problem solving, since the governing equation is basically Newton's second law.	1, 2	1, 5, 10	A, K
6				
7				
8				

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Dynamics " by Hibbeler"
Supporting References	Dynamics " by Beer & Johnston" - Dynamics" by J.L. Meriam "
Necessary Course Material	Calculator, protractor, compass, set square, pencil, eraser

	Course Schedule				
1	Kinematics of Particles. Introduction to dynamics. Rectilinear Motion of Particles				
2	Curvilinear Motion of particles				
3	Circular Motion				
4	Rotation about afixed point, and general motion.				
5	Kinematics of Rigid Bodies.				
6	Kinetics of Particles: Newton's Second Law of Motion.				
7	Kinetics of Particles: Newton's Second Law of Motion.				
8	Mid-Term Exam				
9	Energy and Momentum Methods. Work of a Force. Kinetic Energy of a Particle. Principle of Work and Energy.				
10	Principle of Work and Energy.				
11	Potential Energy. Conservative Forces. Conservation of Energy. Principle of Impulse and Momentum.Impulsive Motion. Impact.				
12	Potential Energy. Conservative Forces. Conservation of Energy. Principle of Impulse and Momentum.Impulsive Motion. Impact.				
13	Plane Motion of Rigid Bodies. Forces and Acceleratin.				
14	Plane Motion of Rigid Bodies. Energy and Momentum Methods.				
15	Mechanical Vibrations. Vibrations without Damping. Damped Vibrations				
16,17	Final Exam				

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	3	42	
Classroom Studying Time (review, reinforcing, prestudy,)	14	2	28	
Homework	0	0	0	
Quiz Exam	0	0	0	
Studying for Quiz Exam	0	0	0	
Oral exam	0	0	0	
Studying for Oral Exam	0	0	0	
Report (Preparation and presentation time included)	0	0	0	
Project (Preparation and presentation time included)	0	0	0	
Presentation (Preparation time included)	0	0	0	
Mid-Term Exam	1	1.5	1.5	
Studying for Mid-Term Exam	1	20	20	
Final Exam	1	1.5	1.5	
Studying for Final Exam	1	20	20	
	Т	otal workload	113	
	Total	workload / 30	3.77	
	Course	ECTS Credit	4	

Evaluation				
Activity Type	%			
Mid-term	40			
Quiz				
Homework				
Bir öğe seçin.				
Bir öğe seçin.				
Final Exam	60			
Total	100			

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	Strong background in mathematics, science, and fundamental engineering principles; ability to apply theoretical and practical knowledge from these fields to model and solve engineering problems	4			
2	Expertise in identifying, defining, and formulating complex engineering problems in civil engineering and related fields. Ability to select and apply appropriate analysis and modeling methods to solve these problems	4			
3	Ability to design complex systems, devices, or products under realistic constraints and conditions. Proficiency in using modern design methods to meet specific objectives				
4	Competence in developing, selecting, and using modern techniques and tools for civil engineering applications. Effective utilization of information technologies to support engineering tasks				
5	Expertise in designing experiments, conducting tests, collecting data, analyzing results, and interpreting findings for civil engineering problem investigations				
6	Ability to work effectively in both intradisciplinary and interdisciplinary teams				
7	Effective Turkish oral and written communication skills and proficiency in using and developing foreign language skills				
8	Commitment to lifelong learning. Ability to access information, stay up-to-date with advances in science and technology, and continuously self-improve				
9	Strong sense of professional and ethical responsibility				
10	Knowledge of project management, risk management, and change management practices; awareness of entrepreneurship, innovation, and sustainable development principles				
11	Understanding of the global and societal impacts of engineering applications on health, the environment, and safety; awareness of national and international legal regulations, standards, and the legal implications of engineering solutions				
12					

LECTURER(S)						
Prepared by	Assis. Prof. Dr. Hasan Selim ŞENGEL					
Signature(s)						

Date: 06.06.2024