

T.C. ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF SCIENCES

..... DEPARTMENT

COURSE INFORMATION FORM

Course Name	Course Code
PHYSICS I	

Compactor	Number of Course Hours Semester		Credit	ECTS	
Semester	Theory	Practice	Credit	ECIS	
1	3	0	3	3	

Course Category (Credit)				
Basic Sciences	Engineering Sciences	Design	General Education	Social
	✓			

Course Language	Course Level	Course Type
English	Undergraduate	Compulsory

Prerequisite(s) if any	none
Objectives of the Course	To provide students with basic information about Newtonian mechanics and conservation laws. Ability to define, formulate and analytically solve problems in physical systems; To improve general problem solving ability.
Short Course Content	Measurement; vectors; movement in one dimension; movement in two and three dimensions; particle dynamics I; particle dynamics II; work and energy; conservation of energy; dynamics of particle systems; collision; rotational kinematics and dynamics; balance of solid bodies; gravity; oscillations.

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	The student recognizes and solves various problems of physical systems in practice.	PO2, PO3	1	A
2	Recognizes the importance of measurement and units.	PO1, PO6	1	A
3	Applies physical systems in daily life.	PO7, PO9, PO10	1	A
4	Recognizes the role of physics in engineering and health sciences.	PO9	1	A
5	Explains the basic laws and concepts of physics.	PO6	1	A
6				
7				
8				

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook "1. Halliday, D., Resnick, R., and Walker, J. (2008). Fundamentals of Physics Edition). John Wiley & Sons, Inc.2. Serway, R.A., Beichner, R.J., Physics For Scientists Engineers with Modern Physics (2007), Harcourt College Publishers."	
Supporting References	"1. Young, H.D, Freedman, R.A. (2006). University Physics Volume1 (12th Edition). Pearson/Addison Wesley 2.Ohanian, H.C. (1989). Physics (2nd Edition) New York: W.W. Norton & Company, Inc.3. Giancoli, D.C. (2004). Physics: Principles with Applications (6th Edition). Pearson Education Inc."
Necessary Course Material	

	Course Schedule		
1	Measurement and Units		
2	Vectors		
3	3 One-Dimensional Motion		
4	Two-Dimensional Motion		
5	Newton's Laws of Motion and Applications		
6	Work and Power		
7	Energy		
8	Mid-Term Exam		
9	Energy		
10	Momentum and Collision		
11	Momentum and Collision		
12	Rotational Movement		
13	Rotational Motion Applications		
14	Balance		
15	Harmonic Motion		
16,17	Final Exam		

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	3	42	
Classroom Studying Time (review, reinforcing, prestudy,)	14	1	14	
Homework	5	1	5	
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)				
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam	1	1	1	
Studying for Mid-Term Exam	7	3	21	
Final Exam	1	2	2	
Studying for Final Exam	14	1	14	
	Total workload		99	
	Total	workload / 30	99/30	
	Course	ECTS Credit	3	

Evaluation			
Activity Type	%		
Mid-term	50		
Quiz			
Homework			
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	50		
Total	100		

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	To correctly understand the basic concepts, laws and relationships between physics.	5			
2	To gain reasoning and problem solving skills on physics concepts and laws.	2			
3	To be equipped with the mathematical tools necessary to examine the problems of theoretical and applied physics.	2			
4	To acquire the skills of designing and carrying out experiments and evaluating the results of experiments individually and in team work.	2			
5	To be able to solve physics problems using information technologies and develop numerical models.	2			
6	To gain the ability to express the basic concepts and laws of physics in a simple and understandable way.	2			
7	To gain awareness of professional and ethical responsibility.	2			
8	Ability to communicate effectively verbally and in written Turkish; To gain the ability to use at least one foreign language related to one's profession.	2			
9	To gain the ability to follow current developments in interdisciplinary courses and scientific activities and to improve oneself by embracing the importance of lifelong learning.	2			
10	To gain the skills of acting independently, taking initiative and creativity.	2			
11					
12					

LECTUTER(S)				
Prepared by				
Signature(s)				

Date:06.06.2024